

Product & Quality Threats and Opportunities

October 22, 2024

Pharmaceuticals)

Disclaimer

The Views expressed in this presentation are my personal opinions and do not reflect the views or positions of Amneal Pharmaceuticals.

Overview

- Extractables & Leachables
- Product Threats
- Quality Threats
- Approach for Assessments
- Qualification Strategies
- Regulatory Compliance
- ✤ References

Extractables & Leachables

- □ Extractables : Chemicals entities that can be extracted from pharmaceutical packaging materials (PM's) or Manufacturing process equipments by subjecting them to exaggerated and controlled conditions in the laboratory.
- PM's can have direct contact with the drug product (e.g., Bottles, Closures, Tubes, Backing Film, Release Liner, etc.) or may have indirect/transient contact such as during in-use conditions of drug product (e.g., Pouch, Actuators, Mouth-piece, Nasal Spray Pumps etc.)
- ☐ Leachables : Chemicals entities that has the potential to migrate (leach) from the PM's and/or Process equipments into the drug product.

For dermatologic use only - Not for ophthalmic use

0.05%

15 g

Product Threats

- ☐ <u>Pharmaceutical Products:</u> Formulated and administered to maximize the therapeutic benefit derived from the product.
- Any action that modifies the formulation composition can adversely impact the derived benefit.
- □ Contact between the product and its associated system provides the opportunity for an interaction between the formulation and system's material of construction.
- □ One such interaction is Leaching (additive interaction) where the leachable could impart an undesirable characteristic on the drug product.

Product Threats

Risk of Contamination:

- Leachables can introduce harmful chemicals, altering the formulation composition and potentially causing **reduction in the stability** of the drug product.
- Development of undesirable aesthetic effects (e.g., smell, taste, discoloration, clarity)
- Formation of extraneous matter (e.g., particulate).
- Alteration of impurity profile.
- □ **Impact on Efficacy:** Leachables may interact with the active ingredient potentially altering the efficacy of the drug product.
- □ **Regulatory Compliance:** Failure to identify and quantify extractables/leachables could result in non-compliance with regulatory standards, leading to delays in approval or market withdrawal.
- □ Patient Safety Concerns: Presence of leachables could be toxic and lead to serious adverse effects in patients compromising their safety and well-being.

Threats to Quality

D Packaging Material Quality:

- Poor quality materials used for Pharmaceutical packaging.
- Coated versus Uncoated Rubber Stopper (Vials), Rubber Plungers (Syringes).
- Type of internal coating in Aluminum canisters used for Inhalation products.
- Barrier properties of multilayer films (e.g., Pouch stock used in TDS).
- Quality of Ink, its curing and printing processes in TDS.

D Process Equipment Material Quality:

- Tubes used for Filling/Transfer process (Inert Materials such as PTFE, FEP etc. preferred).
- Quality of Aseptic Bags/Bio-containers and associated components used for mixing/storing concentrates.
- **Product Integrity:**
 - **Degradation** of the PM over time can compromise product integrity.

Case Study

- □ Leachables can originate from variety of sources and have a diversity of molecular structure.
 - <u>Background:</u> Unknown impurity was found in Drug Substance.
 - <u>Challenge</u>: Source and Identification of Unknown Impurity
 - Investigation:
 - UV spectra of unknown peak different from the API peak.
 - LC/MS analysis was accomplished with both APCI and ESI processes with negative ion mode based on sensitivity of unknown peak.
 - LC-MS Analysis Isotope Pattern of molecular ion and molecular weight of 190 indicated presence of two chlorine atoms.
 - LC-MS-MS Analysis Significant negative ion sensitivity in ESI along with collision induced dissociation showed a primary loss of CO₂ suggested the unknown was carboxylic acid.
 - LC-MS, LC-MS-MS and UV results suggested the unknown was an aromatic carboxylic acid with two aromatic substituted chlorine atoms.

Case Study

- o <u>Outcome:</u>
 - An isomeric dichlorobenzoic acid was consistent with all of the available mass spectrometric data on the unknown.
 - LC/UV and LC/MS analysis on authentic reference compound confirmed that 2,4 dichlorobenzoic acid was the unspecified impurity.
 - 2,4 dichlorobenzoic acid was not structurally related to the API nor was it employed in the API synthesis process, it was confirmed to be a leachable and search was initiated to confirm its source.
- <u>Conclusion:</u>
 - Silicone Rubber tube attached to processing equipment used for the API synthesis was the source of the 2,4 – dichlorobenzoic acid. Bis (2,4-dichlorobenzoyl)peroxide which can easily degrade to yield 2,4 – dichlorobenzoic acid was used for vulcanization of the silicone rubber in that particular tubing.

Approach for Assessments

- → Materials should be chemical and bio compatible, highest quality and 21 CFR compliant.
- → Ensure cleaning procedures are validated to prevent cross-contamination from previous batches or residuals which can lead to false positives
- → Stability testing to evaluate how different storage conditions (e.g. temperature, humidity and proposed shelf-life) and orientation can impact leachables
- → Ensure the PM maintain their integrity throughout the product's shelf-life.
- → Assess the potential for E&L from process equipments and PM that comes in direct contact with drug formulation.
- → <u>Process Controls</u>: Monitor and control manufacturing process to avoid conditions that could exacerbate E&L issues, such as high temperature and prolonged contact times.
- → Implement risk management strategies to identify and mitigate potential E&L issues in early development phase.

Approach for Assessments

- ☐ Screening:
 - Preliminary Screening: Conduct initial screenings to identify potential extractables from materials used in Packaging and Manufacturing.
 - Utilize hyphenated techniques such as Headspace-GC/MS, Direct Injection/GC/MS, LC/MS, ICP/MS and ICP/OES.
- **Quantification and Identification:**
 - Perform comprehensive analysis to identify and quantify leachables in the drug product. This often involves testing under accelerated conditions to simulate long-term storage.
- **Gamma** Stability Studies:

amneal

- Conduct stability studies at multiple time-points to monitor the impact of E&L over time to understand the impact of leachables on stability and efficacy.
- **Regulatory Compliance:**
 - Follow regulatory guidelines from organizations such as FDA, EMA, ICH regarding testing regimens, documentations, risk assessments, and any corrective actions taken.

Qualification Strategies

- □ **Material Qualification:** Verify that manufacturers & suppliers provide materials that meet E&L requirements, Conduct supplier audits if necessary.
- □ Packaging Qualification: Perform extractable studies on packaging materials with simulated solvents to evaluate potential leachables.
- □ Material Specifications: Define and document specifications for materials including acceptable levels of extractables and leachables.
- □ **Process Controls:** Maintain clean room standards and proper handling of materials to minimize the risk contamination (e.g. grease, dust etc.) which can lead to false positive results.
- □ Storage Controls: Regularly monitor environmental conditions such as temperature and humidity where materials and drug products are stored and handled

Regulatory Compliance

- Adhere to Guidelines: Follow applicable regulatory guidelines and standards for E&L testing and management such as those issued by FDA, PQRI, ICH etc. Follow all the internal SOP's pertaining to handling of testing and documentations.
- Submission Documentation: Provide detailed E&L information in regulatory submissions including stability testing results, risk assessments, mitigation strategies.
- **Timely Submission:** Provide timely submission of agency's queries with appropriate data, supplementary information and/or justifications.
- **Training and Awareness:** Proper training and awareness of E&L issues and their risk in the delaying of product approvals to all the personals involved throughout the life-cycle management.

References

- FDA guidance for Industry: Container Closure Systems for Packaging Human Drugs and Biologics.
- Leachable and Extractable Handbook: Edited by Douglas J. Ball, Daniel L. Norwood, Cheryl L. M. Stults, Lee M. Nagao.
- *USP general chapters: <1663>, <1664>, <661.2>, <87>, <88>.*
- The regulatory Environment for Extractables and Leachables: "Low-risk" Dosage Forms (Cristina Manolescu, Scott Pennino, Daniel L. Norwoood, Ph.D.)

Acknowledgement

- Dr. Srinivas Kone Chief Scientific Officer, R&D Generics
- Dr. Balasbramaniyam Lingam, Associate Director, Analytical R&D
- Maryll Toufanian SVP, Regulatory Strategy and Government Affairs
- Janie Gwinn , Vice President, Regulatory Affairs

Thank You

Priti Jagani pritij@amneal.com

