The Future of FDA's Quality Assessment and Knowledge Management - KASA

AAM GRx + Biosims 2019 November 4th, 2019; North Bethesda, MD

Geoffrey Wu, PhD, PMP, CPH Commander, U.S. Public Health Service Associate Director, Science & Communication Office of Lifecycle Drug Products (OLDP) OPQ, CDER, FDA

Pharmaceutical Quality

A quality product of any kind consistently meets the expectations of the user.

Pharmaceutical Quality

A quality product of any kind consistently meets the expectations of the user.

Drugs are no different.

Patients expect safe and effective medicine with every dose they take.

Pharmaceutical quality is

assuring *every* dose is safe and effective, free of contamination and defects.

It is what gives patients confidence in their *next* dose of medicine.

Current Assessment Challenges

FDA

External Challenges

- Volume of new applications
- User fee program expectations (e.g., shorter assessment timelines for certain ANDAs under GDUFA II)
- Commissioner, Congress, the pharma industry, and the public expectations

• Technology advancements

Freestyle narrative assessment:

- Unstructured text
- Summarization of application information

Internal Challenges

" "Copy and paste" data tables

Encumbers best practices for:

- Knowledge sharing
- Management of knowledge across product lifecycle
- Overall modernization

Knowledge-Aided Assessment and Structure Application (KASA) is part of CDER's effort in modernizing regulatory assessment.

The KASA System

KASA – <u>K</u>nowledge-aided <u>A</u>ssessment and <u>S</u>tructured <u>Application</u>

A very important initiative to CDER and FDA!

Objectives of KASA System

KASA is designed to:

- 1. Capture and manage knowledge during the lifecycle of a drug product;
- 2. Establish rules and algorithms to facilitate risk identification, mitigation, and communication for the drug product, manufacturing process, and facilities;

Objectives of KASA System

FDA

KASA is designed to:

- 3. Perform computer-aided analyses of applications for a comparison of regulatory standards and quality risk across the repository of approved drug products and facilities;
- 4. Provide a structured assessment that radically eliminates text-based narratives and summarization of information from the applications.

Team-based Integrated Quality Assessment (IQA)

*Integrated Quality Assessment = A team of experts performing a quality assessment of an application (NDA, BLA, ANDA) based on risk and knowledge management

FDA

Pillar 1 & 2 – Drug Product

The Knowledge Base (Product, Manufacturing, and Facility)

Initial Risk Assessment Algorithm

- The Algorithm objectively and quantitatively captures initial inherent risk of CQA
- The overall risk is considered low, medium or high based on *predefined* ranges
- KASA calculates the initial risk based on drug product characteristics

Structured Product Risk Control

	Initial Risk	Risk Control Dropdown Menu		Explanation Applies to NDA/ANDA		Supporting Information Linked to EDR Submission	
CQA1/ Impurities	Low/ Medium/ High	Design	Approach A Approach B Approach C		<u>Descriptors:</u> Structured Knowle Formulation Desig	dge of n and/or	
		Measurement	Approach H Approach I Approach J		Control Strategy		
CQA2/ Dissolution	Low/ Medium/ High	Design	Approach M Approach N Approach O				
		Measurement	Approach S Approach T Approach V				

Enhanced Risk Management

		Initial Risk		Risk Control Strategy	Residual Risk	
Application 1	CQA/	High	Product Design	None	Medium (High)	
	Assay		Measurement	Traditional Product Release/Stability Testing		
		Initial Risk		Risk Control Strategy	Residual Risk	
Application 2	CQA/	High	Product Design	Approach A	Medium	
	Assay		Measurement	Traditional Product Release/Stability Testing		
		Initial Risk		Risk Control Strategy	Residual Risk	
Application 3	CQA/	High	Product Design	Approach A	Low	
	Assay		Product Design	Approach B		
			Product Design	Approach D		
			Measurement	Traditional Product Release/Stability Testing		

Increasing Level of Risk Control

FDA

KASA informatics

Pillar 1 & 3 – Manufacturing

- Control of drug
 manufacturing risk:
 - Focuses on the risk to each product CQA from a manufacturing process and facilities perspective and risk mitigation

(Product, Manufacturing, and Facility)

Manufacturing Risk Assessment & Control

KASA Interface for Precedent System

Manufacturing Risk Control

	Initial Risk	Unit Operation	Manufacturing Risk Control Dropdown Menu		Assessment Comment	Supporting Information Link	
CQA1 / Dissolution	High / Medium / Low	Wet Granulation	Process Factor	Approach A Approach B Approach C	Descriptors: Process Design & Development, In-Process Controls, Scale up approaches		
			Facility Factor	Approach H Approach I Approach J			
		Compression	Process Factor	Approach M Approach N Approach O			
			Facility Factor	Approach S Approach T Approach V	<u>Descriptors:</u> Prior experience, Site History		

Structured Assessment Approach

FDA

KASA Informatics

• Access approved control strategy for a complex unit operation (e.g. laser drilling process) across multiple applications

Pending A/NDA Manufacturing Assessment

Proposed site has demonstrated capability and proposed process control strategy is in alignment with other approved applications: Low risk Proposed site does not have demonstrated capability and/or proposed process control strategy is not in alignment with other approved applications : More Scrutiny

Unanimous Support

- FDA Advisory Committee Meeting September 20, 2018
- Ten (10) members from Industry and Academia

VOTE: Relating to the KASA initiative, should the FDA consider the enhancement of submission format to improve the efficiency and consistency of regulatory quality assessment?

Vote Result:YES: 10NO: 0ABSTAIN: 0

Committee Discussion: The committee unanimously agreed that, relating to the KASA initiative, the FDA should consider enhancement of submission format to improve the efficiency and consistency of regulatory quality assessment under the KASA initiative. Several members stated that this would increase communication while making submissions from industry easier and more transparent. Brand and generic industry representatives on the committee also agreed that KASA would be good for industry and FDA. Members encouraged a flexible design, so data is searchable, easily transposable and exportable for further analysis. Please see the transcript for details of the Committee discussion.

PQ/CMC Project – establishes electronic standards for submitting Pharmaceutical Quality (PQ) and Chemistry, Manufacturing and Controls (CMC) data.

Benefits of KASA System

- Enhances consistency and objectivity of regulatory assessment
- Enables knowledge management of product, manufacturing, and facility
 - Excels regulatory action and decision-making

FD/A

Benefits of KASA System

- Clearer regulatory expectations; enhanced transparency
- Increased 1st cycle approvals (esp. generics)
 - More affordable and accessible medicines

FDA

Acknowledgement

Lawrence Yu Susan Rosencrance Andre Raw Peter Capella Sharmista Chatterjee Larisa Wu Paul Seo Sandra Suarez

Rapti Madurawe Edwin Jao Vilayat Sayeed Bhagwant Rege Bing Cai

Rakhi Shah Ying Zhang Ryan Nguyen Micael Guillot Brock Roughton Norman Schmuff Lawrence Callahan Frank Switzer Deborah Elliott Michael Philips IT contractors

FDA

Xiang (Shane) Yu Rongzuo Xu Zhouxi Wang

OPQ KASA Expo Booth

SMEs:

Micael Guillot (Drug Product) Edwin Jao (Manufacturing) Ryan Nguyen (Drug Product) Brock Roughton (Drug Product) Paul Seo (Biopharmaceutics) Rakhi Shah (Manufacturing) Norman Schmuff (PQ/CMC) Larisa Wu (Manufacturing)

- Date: Nov. 5th, 2019
- Time: 3:30 pm -5:30 pm
- Booth #: 22-23

