Safe, Effective Generic Drugs Help Alzheimer’s Patients

Alzheimer’s affects more than 5 million Americans and it is the sixth-leading cause of death. FDA-approved generic prescription drugs slow the worsening of symptoms, improving quality of life for patients and their caregivers.

Now more than ever, it is essential to ensure continued access to the patients who rely on our medicines. Through the pandemic and beyond, generic medicines can offer much-needed health benefits and substantial cost savings. In fact, generics saved patients with Alzheimer’s $22.2 billion over the past 10 years.

Securing the Promise of Biosimilars

Just as generics offer savings over brand-name drugs, biosimilars—safe, effective alternative versions of biologic medicines—have great potential to improve the quality of life for America’s patients, while at the same time saving the health system billions of dollars.

Source: IQVIA 2019
Visit accessiblemeds.org for more information

Many Alzheimer’s patients also take generic medications for other conditions:

- 62% have hypertension, for which they saved $468M
- 34% have cardiovascular disease, for which they saved $518M

Safe, Effective Generic Drugs Help Alzheimer’s Patients

90% Prescriptions filled in the U.S. are dispensed as generics
Yet generics account for only 20% of all drug spending

$96.1B Medicare Savings $1,053 per enrollee
$48.7B Medicaid Savings $770 per enrollee

Total Savings in 2019: $3.5 Billion
This report estimates savings from generic drugs for the 10-year period between 2010 and 2019, as well as a single-year estimate for 2019.

Base Savings Estimates:

The base savings were calculated by IQVIA. We generated condition-level savings by assigning drugs to a list of common conditions and aggregating savings for all drugs that are used to treat these conditions. Product condition assignments were conducted by a Doctor of Pharmacy. Importantly, many products treat multiple conditions. For this analysis, we ensured that the most common use of the product was the condition into which it was assigned.

Comorbidity Estimates:

We used published epidemiological data to determine the three most common comorbidities for each of the index conditions. We calculated the base savings for the primary condition in the same manner as described above and assigned a weighted savings to each of the three selected comorbid conditions based on published prevalence data. Because the IQVIA data provided units rather than patients, we used units as a proxy for the number of patients treated and adjusted the units, and thus savings, in proportion to the published prevalence of each comorbid condition. Importantly, this methodology, due to the differences in units utilized by patients for specific conditions, could occasionally lead to estimates of comorbidity savings that exceed the total savings for that stand alone condition. In these cases, the savings were either capped, when the total numbers were relatively low relative to the main condition or, more commonly, the incidence rate for the comorbidity was applied again, to ensure a lower savings estimate. While this is a methodological choice and likely underestimates the savings from the comorbidity, it effectively assumes that the comorbidity requires more units per patient treated than the main condition.